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A two-stage free-electron laser with a specially designed delay of electrons in the drift region between the
two wigglers allows us to obtain essentially positive gain as a function of detuning, i.e., ‘‘lasing without
inversion’’~LWI !. The key physical assumption is that it ispossibleto tell which electrons emit and which
absorb laser energy. We here show that straightforward attempts to realize LWI operation in a free-electron
laser are frequently~but not inevitably! frustrated by the difficulty of telling the difference between emitting
and absorbing electrons. We propose a scheme utilizing both transverse and longitudinal components of the
electron velocity to achieve cancellation of absorption. Numerical simulations verifying the validity of the
scheme are presented.@S1063-651X~96!03712-9#

PACS number~s!: 41.60.Cr, 52.75.Ms, 42.50.Gy, 42.50.Vk

I. INTRODUCTION

By utilizing the concept of quantum coherence and inter-
ference it has been shown that it is possible to achieve lasing
without inversion~LWI ! @1# in ordinary lasers@2#. These
ideas have potential for application in the realm of short-
wavelength laser operation. On the other hand, the question
naturally arises: ‘‘can we have LWI operation within the
context of the free-electron laser~FEL!?’’

In previous work@3# it has been shown that it is possible
to achieve a sort of FEL operation within a LWI context in
the short-wavelength~single quantum! regime. The key idea
was to implement a situation in which an electron beam in-
teracted with the laser field in two sequential regions~wig-
glers!. In such a situation it was found that it was possible to
arrange for the cancellation of absorption of radiation while
at the same time retaining emission.

The notion of inversion in FEL is very different from that
associated with ordinary lasers. However, the use of gener-
alized Bloch equations for FELs@4# allows one to draw a
connection between the description of a FEL and an ordinary
laser, as well as to define the notion of inversion. Thus in a
usual FEL net gain predominantly occurs if the majority of
the electrons have the momentum above the resonant one,
and loss occurs otherwise. In our FEL scheme, net gain is
possible even if only a minority of the electrons are above
the resonant momentum.

LWI in ordinary lasers is a result of quantum interference
with no classical explanation. But is it possible that LWI
operation in the FEL can be extended to the classical~many
quanta of energy per electron! regime@5#? In a recent paper
@6#, it was argued that such a possibility exists and a tentative
scheme for achieving it was proposed. In that analysis a
double-wiggler configuration was again assumed, and the
electrons were sorted in the drift region according to their
injected energies, see Fig. 1. It was argued that it is possible

to produce an asymmetric spectrum of gain, such that elec-
trons whose injected energy is less than the resonant energy
can be essentially ignored by the laser whereas electrons
with injected energy greater than the resonant energy led to a
net stimulated emission~see Fig. 1!.

We note that there is a common feature of LWI in ordi-
nary lasers and FELs, namely, absorption cancellation due to
interference. This interference is of a quantum nature in or-
dinary lasers, and has a counterpart in extremely short-
wavelength FELs, where a quantum description is appropri-
ate ~see @3#!. Furthermore, in the classical regime, the
electrons still have the phase relative to the ponderomotive
potential, and can interact with a laser in such a way that
radiation in one wiggler interferes destructively with radia-
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FIG. 1. The setup~lower right-hand corner! and the numerical
result for the gain as a function of detuning for laser without inver-
sion proposed in@1#; N2T50.03. Here and elsewhere we plot the
dimensionless gain2^g&/(P8T3) and detuningV in units of
VT, whereT is the time of flight through one wiggler,N is given
by Eq. ~8! and is directly related to the strength of the ponderomo-
tive potential, andP governs the period of electron oscillations, see
Eq. ~18!.
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tion from another wiggler. Thus LWI is achieved via purely
classical interference in the FEL.

The key physical assumption for LWI in FEL is that it is
possibleto tell which electrons emit and which absorb laser
energy. We here show that straightforward attempts to real-
ize LWI operation of the type mentioned in the preceding
paragraph are frequently~but not inevitably! frustrated by
the difficulty of telling the difference between emitting and
absorbing electrons. Specific examples are provided in which
LWI-like operation within the context of a FEL can in prin-
ciple be realized.

Furthermore, we show that the correspondence between
the angle of the laser field propagation and the injected lon-
gitudinal velocity can be the key for introducing a velocity-
selective phase delay that cancels absorption by interference
between the interaction in two consecutive wigglers. This
phase-sensitive interference scheme is an example of a
purely classical LWI action which does not rely on the quan-
tum nature of matter, as it does in atomic schemes. The con-
clusion of the present work is that it is in principle possible
to reduce the lasing threshold for electron beams with sig-
nificant longitudinal velocity spread. In the following we de-
velop these ideas in detail.

II. EQUATIONS OF MOTION AND GAIN

The classical dynamics of electrons in a free-electron la-
ser @7# is described by the Hamiltonian@8#

H[gmc25cA~p2eA!21m2c2, ~1!

wherem is the mass of an electron,e is the charge of an
electron,c is the velocity of light,g is referred to as the
Lorentz factor,p is the canonical momentum, andA is the
vector potential of the combined electromagnetic field of the
wiggler, situated along thez axis ~designated by a subscript
W), and the laser field~designated by a subscriptL), which
propagates at an angleu to the axis of the wiggler, as in Fig.
2, is

A52ŷ@AWcos~2nWt2kWz!

1ALcos~2nLt1kLzcosu1kLxsinu1f!#. ~2!

Both fields arey polarized, andf is the phase of the laser
field at the instant of the electron entry into the wiggler.

The Hamiltonian does not depend explicitly ony, there-
fore

dpy
dt

52
]H

]y
50. ~3!

If the initial value of the momentum is zero,py(0)50 @9#, it
remains zero at all timespy(t)50. Then the wiggling motion
in this direction is described by they component of the ve-
locity

dy

dt
5

]H

]py
5

2eAy
gm

[vy . ~4!

For the other coordinates

dz

dt
5

]H

]pz
5

pz
gm

[vz ,
dx

dt
5

]H

]px
5

px
gm

[vx . ~5!

In the equations for the derivatives of the momenta there are
terms of interaction with the fields having various depen-
dences on the time and the coordinates. Of those, following a
standard procedure@10#, we drop~an analog of a rotating-
wave approximation! the terms that are rapidly oscillating in
the frame of reference of an electron moving with the in-
jected velocityv i,c but close toc. The remaining~‘‘near-
resonant’’! terms oscillate slowly in this frame of reference.
In this way we obtain the equations of motion for the energy
and momenta~see the Appendix!,

dg

dt
5Nsin~2Dnt1qzz1qxx1f!, ~6!

mc2

Dn

dg

dt
5
1

qz

dpz
dt

5
1

qx

dpx
dt

, ~7!

where

N5
e22AWALDn

m2c2g
. ~8!

The argument of the sin function in Eq.~6! is the phase
relative to combined action of the wiggler and laser fields
~‘‘ponderomotive potential’’!,

c52Dnt1qzz1qxx1f. ~9!

Equation~7! expresses the relation between the momentum
(qx5kLsinu, qz5kLcosu1kW) and energy (Dn5nL2nW)
transfer in each act of a photon emission or absorption~see
Fig. 2! @11#.

Gain in the case of electrons injected with a certain initial
energy~‘‘cold beam regime’’! is proportional to the flux of
electrons and the change of energy of all the electrons aver-
aged ~which is designated bŷ &) over the uncontrollable
phase at the injectionG}2^Dg&. The dynamical equations
simplify in the case when electron energyg does not differ
very much from the injected energyg i or a certain resonant
energyg r and the longitudinal coordinate and velocity differ

FIG. 2. Schematic of the wiggler and laser fields~top!, and the
momentum change in the processes of emission and absorption
~bottom!.
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by a small amount from a uniform motion with the injected
velocity; z5v i t1dz and vz5v i1dvz . The equations of
motion become

dg

dt
5Nsin~Vt1qzdz1qxx1f!. ~10!

Here

V5qzvzi2Dn[qz~vzi2v r ! ~11!

is the detuning of an electron from the resonance with the
ponderomotive potential, and

v r5qz /Dn ~12!

is its velocity corresponding to the resonant energyg r . The
equations for the velocity components~see the derivation in
the Appendix! are

dvz
dt

5
qzc

2

Dng r
3

dg

dt
, ~13!

dvx
dt

5
qxc

2

Dng r

dg

dt
. ~14!

The equations demonstrate that there is a one-to-one corre-
spondence between the infinitesimal change of each compo-
nent of the velocity and the change of energy. These equa-
tions, though describing a two-dimensional motion, result in
the pendulum equation with the phasec,

c̈5
P
N sinc, ~15!

c~0!5f, ~16!

ċ~0!5V, ~17!

P5
N 2c2

g r
3Dn

~g r
2qx

21qz
2!. ~18!

It is seen from Eq.~15! that the motion in the wigglers is
effectively one dimensional, i.e., similar to that withqx50.
However, this is not true for the drift region, where the two-
dimensional dynamics of the electrons is different from the
one-dimensional case.

III. PERTURBATIVE DESCRIPTION OF MOTION

An analytical solution to the above equations can be ob-
tained in a perturbation series in the laser amplitude~in the
small parameterN2T, see further!, following the method of
@10#. The indices I and II refer to the first and the second
wiggler, respectively. In the zeroth order of perturbation, the
coordinatesdz andx vanish, which yields

dg I
~0!

dt
5Nsin~Vt1f!. ~19!

When averaged over injection phases, the net change of the
energy~and consequently gain! is zero in this order.

In the next order in the lasing field, the coordinates are
from ~14!,

dz~1!~ t !5
qzc

2

Dng r
3E

0

t

Dg I
~0!~ t8!dt8, ~20!

x~1!~ t !5
qxc

2

Dng r
E
0

t

Dg I
~0!~ t8!dt8. ~21!

Expansion of~10! around the solution~19! with the above
coordinates gives

dg I
~1!

dt
5Pcos~Vt1f!N21E

0

t

Dg~0!~ t8!dt8. ~22!

When integrated over time and averaged over the injection
phases, the change of energy, and consequently gain, is non-
zero in this order of perturbation.

In order to focus on the effects of interference of radiation
processes, we will consider interaction in two identical wig-
glers of lengthLW with a drift region between them, in ac-
cord with the setup in our previous work@6#. The time it
takes an electron to traverse a wiggler isT'LW /v r . The
effect of the drift region is an addition of phase delayDc in
the second wiggler relative to the first one, which, from ex-
amining ~9!, is seen to be

Dc5S sL2
sec

v
1xIIsinũ2xIsinu D , ~23!

wherese andsL are the paths of an electron and of the light
wave in the drift region, respectively,ũ is the angle of propa-
gation of the laser in the second wiggler,xI andxII are the
transverse coordinates at the exit from the first wiggler and at
the entrance to the second wiggler, andv is the absolute
value of the electron velocity which is not changed in a
purely magnetic field of the drift region. The optical klystron
@12# is a specific case of this phase delay withxI5xII50 and
se5sL , but it is not considered here.

Then the change of energy in the second wiggler is given
by

dg II
~0!

dt
5Nsin~Vt1f1Dc!, ~24!

dg II
~1!

dt
5Pcos~Vt1f1Dc!N21E Dg~0!dt8. ~25!

Application of Eqs.~22! and ~25! yields the phase averaged
energy change in the whole laser,

^Dg~1!&5
P
2V3 @2VTsinVT14cosVT2412VTsin

3~2VT1Dc!22VTsin~VT1Dc!

12cosDc12cos~2VT1Dc!

24cos~VT1Dc!#. ~26!

For the case of a usual FEL (Dc50) this gives the well-
known expression
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^Dg&5~2T!3P
1

8

d

da
~sinc2a!ua5VT , ~27!

where sinca[sina/a.
For the case of the laser without inversion proposed in our

previous work@6# the phase delay was chosen to be

Dc5H 02qz~vzi2v r !T[02VT, vzi.v r
p2qz~vzi2v r !T[p2VT, vzi,v r .

~28!

In this case

^Dg&5Q~V!~2T!3P
1

16

d

da
~sinc2a!ua5VT/2 , ~29!

and we see that absorption is completely canceled for the
negative detunings@13#.

The maximum gain for LWI is lower than for a usual
laser, but its advantage is manifested under conditions of a
broad electron distributiong(v2 v̄) over injected energies
~‘‘hot beam regime’’!. Gain in this regime is obtained via the
expression for the gain of a monoenergetic electron beam,

Ghot~ v̄ !5E G„V~v8!…g~v82 v̄ !dv8. ~30!

Then the integral of the gain curve is important,

I g52E ^Dg&d~2VT!. ~31!

If it is nonzero, the gain for the broad distribution is propor-
tional to the inverse width of the distribution. If the integral
I g is zero, the gain is much less: proportional to the square of
the inverse width~see@6#!. For a usual FEL the integral~31!
over only positive detuningsis

I g5~2T!3P
1

4
, ~32!

and the integral has exactly the opposite value over the nega-
tive detunings, so that the overall integral iszero. For the
LWI case the integral over the negative detunings is zero,
and the integral over positive detunings still has the value
~32!, i.e., 1/4, disregarding the constant factors, so that the
overall integral is positive.

We performed numerical simulation of the electron dy-
namics using Eqs.~10!–~14! without the small field approxi-
mation. The unitless gain for the LWI scheme is shown in
Fig. 1. It is in an excellent agreement~the difference cannot
be resolved in this plot! with the analytical result~29! even
for moderate laser amplitudes.

IV. SINGULARITY IN ONE-DIMENSIONAL MOTION

However, there are subtleties associated with the straight-
forward application of these ideas to the FEL. The root of the
difficulty is that the equipment producing the phase delay
~e.g., the magnetic field in the drift region! will have as an
initial condition the velocitiesvz of electrons as they exit
from the first wiggler. This is, of course, different from the
initial velocity vzi with which they enter the first wiggler.

Therefore instead of~28!, the phase delay will be given by

Dc5H 02qz~vz2v r !T, vz.v r
p2qz~vz2v r !T, vz,v r .

~33!

Since the change of the velocity is small, it is reasonable to
think that the phase delays~28! and~33! would be essentially
the same. However, this is not the case and the gain turns out
to be significantly altered. The result of numerical solution
using Eqs.~10!–~14! for the case of the delay~33! is shown
in Fig. 3. The integral of this function is found to be zero.

The reason for the sharp spike close to the resonance is
the peculiar behavior of electrons in the vicinity of the ve-
locity v r where the step of the phase delay occurs. To this
end, we note that electrons with initial velocity less than~but
near to! v r can end up with velocity greater thanv r and be
indistinguishable from the electrons injected with velocity
greater thanv r , see Fig. 4; and vice versa for electrons with
velocity initially greater thanv r .

Even for the case of a very weak laser field~which there-
fore implies a small velocity change! the role of the electrons
in the vicinity of v r is crucial. In the vicinity ofv r the above
described perturbation procedure has a singularity. The
change of energy averaged over the injection phases does not

FIG. 3. Implementation of LWI using the exit velocities of elec-
trons from the first wiggler~inset! as per phase delay given in Eq.
~33!. The numerical result for the gain;N2T50.03, the step func-
tion is smoothed to the slope of 1 in units ofVT.

FIG. 4. Diagram showing electron energy and phase change
close to the step separating phase-delay domains.
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vanish in the zeroth order of perturbation. However, outside
this vicinity, such that none of the electrons will crossv r ,
the gain is the same as given in the preceding section.

To express this quantitatively we recall the expression for
the change of energy in the first wiggler and the second
wiggler,

Dg I5NTsin~f̃ !sinc~VT/2!, ~34!

Dg II5NTsin~f̃1VT1Dc!sinc~VT/2!, ~35!

where f̃5f1VT/2. Depending on their injected energies
and phases, the electron will acquire different energy
changes. Let the electrons with phases sin(f̃)5d move from
a specific injected energy to exactly the energy where the
step occurs (g r in our case!. As before, the energy change in
the first wiggler averaged over the injection phases is zero in
this order of perturbation. In the second wiggler, the energy
change averaged over the intervals of electron phases
sinf̃.d and,d,

^Dg II&56NTcos~VT1Dc!
1

p
A12d2sinc~VT/2!, ~36!

where the plus corresponds to the first interval, and the mi-
nus corresponds to the second interval. One of these intervals
corresponds to the electrons that did, and the other interval to
the electrons that did not cross the energy where the step
occurs.

Averaging over the phases at a specific energy, in general,
gives a narrow peak~dip! close to the step with the half-
width

gwidth5NTusinc~VT/2!u. ~37!

Then the integral of the energy change over one of the two
halves of the peak is

I g,peak57~2T!3Psinc2~VT/2!cos~VT1Dc!
1

8
, ~38!

where now the minus corresponds to the electrons with the
injected energy above the step and the plus to those with the
energy below the step. These analytical results coincide with
the numerical modeling. For the phase delay~33! the area of
the peak~actually the dip! in a small vicinity of zero detun-
ing is opposite to the expression~32!. Combined with the
zero integral over negative detunings and still the same
‘‘1/4’’ integral over the positive detunings as given by~32!,
the overall integral vanishes.

V. TWO-DIMENSIONAL MOTION

In the preceding section we have seen that the goal of
absorption cancellation is not achieved in the simple version
of the scheme due to the peculiar behavior of electrons near
the phase-delay step. The phase delay consists of two parts:
the smooth velocity-dependent partqz(v2v r) aimed at com-
pensating for the bunching in the first wiggler and the step-
like velocity-dependent part changing the phase delay from
0 to p. We consider the step to be sharp, but the numerical
calculations show that the effect is still present if its width is

comparable with the homogeneous width. This step existed
as a function of the velocity at the exit from the first wiggler.
Due to even very small changes in energy, the electrons were
experiencing a phase delay very much different from the
optimum one. Hence we come to the conclusion that absorp-
tion cancellation can only be realized if the steplike part is a
function of the injected velocity. The smooth part can still be
the function of the exit velocity from the first wiggler with-
out affecting the gain significantly. Thus we aim at imple-
menting the following delay function:

Dc5H 02qz~vz2v r !T, vzi.v r
p2qz~vz2v r !T, vzi,v r .

~39!

To implement such a delay function, a somewhat more
sophisticated scheme is envisioned. First let us examine
more closely the changes in the velocities in the first wiggler.
From Eqs.~13! and ~14! we find

dvx
dvz

5
qxg r

2

qz
'g r

2sinu, ~40!

the last equality made in the approximation of a small angle
u andkL@kW . Even though sinu;0.01, the proportionality
coefficient may be large, sinceg;100.

The changes of the velocities are depicted in Fig. 5~a!.
Here the initial positions of electrons with the same initial
velocity are shown as white circles. The final states of elec-
trons are shown with the black circles. The electrons with the
same initial velocity now lie along a line with the slope
determined by~40!. Electrons initially at resonance move
symmetrically in both directions along the line. Electrons
initially above resonance move preferably to lower energies
rather than to higher energies, while the electrons initially
below resonance move preferably to higher energies. This
illustrates the gain mechanism discussed in Sec. III. Figure 5
allows us to see the same process in a different picture, i.e.,
to see how the initial phase determines the change of the
longitudinal velocity. The amount of velocity change is de-
termined by the detuning and the injection phase, but the
changes of the velocity components are proportional. Inte-
grating ~40!, we see

vx5g r
2sinu~vz2vzi!, ~41!

hence the transverse velocity bears the memory of the initial
velocity. It becomes, in fact, possible to distinguish by the
transverse component the electrons that experienced net
emission from those that experienced net absorption.

In the previous sections, even though the motion might
have been two dimensional~in x andz directions!, this fact
was not used for interference. In the present scheme we use
both the longitudinal and the transverse components of the
velocity at the exit from the first wiggler to determine the
phase delay~see Fig. 6!. As seen from Fig. 5, the electrons
with initial velocity below resonance end up in the upper half
plane bordered by the line

vx5g r
2sinu~vz2v r !. ~42!
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The electrons with initial velocity higher than the resonant
one are now below this line. Then the step needs to be ar-
ranged along this line, as it is shown in Fig. 6.

Practically this modification is achieved by setting the la-
ser cavity at some angle with the wiggler as in Fig. 2. The
electrons will enter the drift region at different angles de-
pending on their transverse velocity. By their deflection in
the magnetic field, they will receive a phase delay corre-
sponding to the smooth part of the delay function@6#. In
addition, the electrons from only one side of~42! will be sent
to a region of magnetic field with sharp boundaries, where
they travel an additional path corresponding to the phase
p. This implements the step part of the phase delay@14#.

The analytical expression for the gain is very complicated
in this case. For numerical simulation of this situation we
have to solve Eqs.~10!–~14! taking into the account the
transverse motion, and to introduce the phase shift in the
drift region depending on both components of the velocity.
The result for the case of phase delay~39!, Fig. 6, shows that
the original LWI result is recovered.
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APPENDIX

Because the present two-dimensional problem is some-
what different from the usual one-dimensional analysis, we
provide here some intermediate steps in the derivation of
formulas used in the paper.

Provided thatpy(t)50, the Hamiltonian~1! becomes

H[gmc25cApz21px
21e2Ay

21m2c2. ~A1!

Then

FIG. 5. In all plots open circles are initial states of electrons,
solid circles are final states of electrons with different initial phases.
Lines connect electrons with the same initial velocity and different
phases. Curve 1 designates the electrons injected below resonance,
curve 2 electrons injected at resonance, and curve 3 electrons in-
jected above resonance. Longitudinal velocity has origin at reso-
nance. Plots~a! and ~b! describe the effect of the first wiggler on
electrons.~a! Schematic of changes of longitudinal and transverse
velocity components in the first wiggler. The axes have different
scales. Electrons with the same initial energy are positioned along
straight lines as per Eq.~41!. ~b! The corresponding motion in
phase-velocity coordinates. The open circles correspond to the ini-
tial state, and the solid circles correspond to the final state. The area
between the final and the initial curves is positive for 1~loss!, zero
for 2, negative for 3~gain!. ~c! Same as~b!, but open circles~solid
circles! correspond to entrance to~exit from! second wiggler. Key
point is that curve 1 shows electrons have neither gained nor lost
energy after traversing both wigglers with appropriate phase delay
as given by Eq.~39!.

FIG. 6. The implementation of LWI using both longitudinal and
transverse components of the velocity as per Eq.~39! ~upper right-
hand corner!; numerical result for the gain;N2T50.03.
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mc2dg

dt
5

]H

]t
5
e2

gm

]

]tSAy
2

2 D , ~A2!

dpz
dt

52
]H

]z
52

e2

gm

]

]zSAy
2

2 D , ~A3!

dpx
dt

52
]H

]x
52

e2

gm

]

]xSAy
2

2 D . ~A4!

The square of the vector potential~2! is given by

Ay
2

2
52AW

2 cos2~nWt1kWz!12AL
2cos2~nLt2kLcosuz2kLsinux2f!12AWAL@2cos~nWt1kWz1nLt

2kLzcosu2kLxsinu2f!1cos~2nWt2kWz1nLt2kLzcosu2kLxsinu2f!#. ~A5!

Only the last term can be slowly oscillating in the electron
frame of reference, the other three are thrown away in the
rotating-wave approximation. The phase of the remaining
term is

c52~nL2nW!t1~kW1kLcosu!z1kLxsinu1f.
~A6!

Substitution of~A5! into ~A4! yields the equations of motion

dpz
dt

5
e2

gm
2AWAL~kLcosu1kW!sinc, ~A7!

dpx
dt

5
e2

gm
2AWALkLsinusinc, ~A8!

dg

dt
5

e2

gm2c2
2AWAL~nL2nW!sinc, ~A9!

which are equivalent to Eqs.~6! and ~7!.
To obtain these equations in terms of the velocity, we

need the kinematic relations~5!,

pz5gmvz , ~A10!

px5gmvx . ~A11!

Upon substitution to the Hamiltonian~A1! one obtains

c25vz
21vx

21c2~11ay
2!
1

g2 , ~A12!

where the dimensionless vector potential is

ay5
eAy
mc

. ~A13!

Further for simplicity we consider it much less than unity;
the generalization for large vector potentials is trivial.

Next we differentiate the above kinematic relations. Later
we take them at the point of unperturbed motion of the elec-
tron at resonance, whenvx505px , and the longitudinal
variablesvz5v r , pz5pr , g5g r . Then from~A12!

g3vzdvz5c2dg. ~A14!

Differentiation of ~A1! yields

mc2dg5vzdpz , ~A15!

and from these

dpz5g3mdvz . ~A16!

Differentiation of ~A11! gives

dpx5gmdvx . ~A17!

From the above two equations we conclude that the trans-
verse mass of a relativistic electron ismg and the longitudi-
nal mass ismg3.

Upon substituting the explicit expression for the resonant
velocity

vz5v r[
Dn

qz
, ~A18!

Eq. ~A15! coincides with the dynamic equation~7!; Eq.
~A14! results in Eq.~13!:

dvz
dt

5
qzc

2

Dng r
3

dg

dt

and, together with Eq.~7!, Eq. ~A17! yields Eq.~14!:

dvx
dt

5
qxc

2

Dng r

dg

dt
.

6786 54NIKONOV, SCULLY, AND KURIZKI



@1# O. Kocharovskaya and Y. Khanin, Pis’ma Zh. E´ksp. Teor. Fiz.
48, 581~1988! @JETP Lett.48, 630~1988!#; S. E. Harris, Phys.
Rev. Lett.62, 1033 ~1989!; M. O. Scully, S. Y. Zhu, and A.
Gavrielides,ibid. 62, 2813~1989!.

@2# A. S. Zibrov et al., Phys. Rev. Lett.75, 1499 ~1995!; G. G.
Padmabanduet al., ibid. 76, 2053,~1996!.

@3# G. Kurizki, M. O. Scully, and C. Keitel, Phys. Rev. Lett.70,
1433~1993!; D.E. Nikonov, B. Sherman, G. Kurizki, and M.O.
Scully, Opt. Commun.123, 363 ~1996!.

@4# H. Al Abawi, F. A. Hopf, and P. Meystre, Phys. Rev. A16,
666 ~1977!.

@5# We note that the difficulties associated with an antisymmetric
gain-absorption curve are circumvented in the high-gain re-
gime of a FEL operation, see R. Bonifacio, C. Pellegrini, and
L. Narducci, Opt. Commun.50, 373 ~1984!; R. Bonifacio
et al., Riv. Nuovo Cimento13, 1 ~1990!. D. E. Nikonov, Yu.
V. Rostovtsev, and M. O. Scully plan to consider the high-gain
regime for the FEL without inversion in future work.

@6# B. Sherman, G. Kurizki, D. E. Nikonov, and M. O. Scully,
Phys. Rev. Lett.75, 4602~1995!.

@7# C. A. Brau,Free-Electron Lasers~Academic, Boston, 1990!;
G. Dattoli, A. Renieri, and A. Torre,Lectures on the Free
Electron Laser Theory and Related Topics~World Scientific,
London, 1993!.

@8# We consider low enough currents and correspondingly low
enough densities in the electron beam so it is possible to ne-
glect the Coulomb interaction between the electrons, and thus
to consider the motion of electrons separately.

@9# For the purposes of the present discussion we disregard the
distribution in the initial transverse velocities and consider
only the distribution in longitudinal velocities. This treatment
is valid until the initial transverse velocities are less than its
variation ~14! due to the interaction with the wiggler. This
gives a limitation for the normalized emittance ofen<0.1

mm mrad for a beam width of 1024 m and characteristic val-
ues of parameters assumed in the paper. This value is an order
of magnitude beyond that of the present technology. However,
one should expect qualitatively similar phenomena at higher
emittance values.

@10# A. Yariv, Quantum Electronics~John Wiley, New York,
1989!, Chap. 13.

@11# We note that the momentum-energy relation~7! and all the
following results apply to other cases of polarizations of the
fields as well.

@12# N. A. Vinokurov and A. N. Skrinsky, Institute of Nuclear
Physics ~Novosibirsk! Report No. INP77-59, 1977~unpub-
lished!; N. A. Vinokurov, in Proceedings of the 10th Interna-
tional Conference on High Energy Particle Accelerators, Ser-
pukhov, 1977@Institute of Nuclear Physics, Siberian Branch,
USSR Academy of Science Report No. IYAF77-59, 1977~un-
published!#.

@13# An interesting precursor to the present considerations is to be
found in the ‘‘echo effects in the FEL’’ studies, see P. Meystre
et al., Opt. Commun.29, 87 ~1979!.

@14# Yet it is important to ask what price is to be paid for the
contribution of a wide range of longitudinal velocities to gain
in this scheme, considering that the total phase-space electron
distribution is conserved by Liouville’s theorem. The answer is
that the electrons injected into the first wiggler must be within
the angular range allowed by Eq.~42!, which implies that the
anglevx /vz must be well defined. This restriction is a substi-
tute for the longitudinal velocity spread limits in usual FELs. It
is nevertheless much less stringent than in our single quantum
FEL-LWI scheme@3#, where the collimation angle had to be of
the order of the small recoil parameter~1025 or less!, so as to
ensure distinguishability between electron momentum states
after emission or absorption of only one photon.

54 6787FREE-ELECTRON LASER WITHOUT INVERSION VIA . . .


